欢迎来到18体育新利网站!专业生产:高频加热机,模块中频,高频炉,高频感应加热设备等,提供技术参数、工作原理、打样报价等服务。电话:13526576560 微信、QQ同号
18体育新利

STM32控制中常见的PID算法总结

来源:行业新闻    发布时间:2024-04-03 03:16:09

  在工业应用中PID及其衍生算法是应用最广泛的算法之一,是当之无愧的万能算法,若能够熟练掌握PID算法的设计与实现过程,对于一般的研发人员来讲,应该是足够应对一般研发问题了,而难能可贵的是,在很多控制算法当中,PID控制算法又是最简单,最能体现反馈思想的控制算法,可谓经典中的经典。经典的未必是复杂的,经典的东西常常是简单的,而且是最简单的。

  PID算法通过误差信号控制被控量,而控制器本身就是比例、积分、微分三个环节的加和。这里我们规定(在t时刻):

  :控制器的输出与输入偏差值成比例关系。系统如果出现偏差,比例调节立即产生调节作用以减少偏差。

  特点:过程简单快速、比例作用大,可以加快调节,减小误差;但是使系统稳定性下降,造成不稳定,有余差。

  :积分环节主要是用来消除静差,所谓静差,就是系统稳定后输出值和设定值之间的差值,积分环节实际上就是偏差累计的过程,把累计的误差加到原有系统上以抵消系统造成的静差。

  :微分信号则反应了偏差信号的变化规律,或是说变化趋势,根据偏差信号的变化趋势来进行超前调节,从而增加了系统的快速性。

  PID的基本离散表示形式如上。目前的这种表述形式属于位置型PID,另外一种表述方式为增量式PID,由上述表达式可以轻易得到:

  上式就是离散化PID的增量式表示方式,由公式能看出,增量式的表达结果和最近三次的偏差有关,这样就大幅度的提升了系统的稳定性。必须要格外注意的是最终的输出结果应该为:输出量=

  PID 的重要性应该无需多说了,这个控制领域的应用最广泛的算法了。本篇文章的目的是希望能够通过一个例子展示算法过程,并解释以下概念:

  设定一个输出目标,反馈系统传回输出值,如与目标不一致,则存在一个误差,PID根据此误差调整输入值,直至输出达到设定值

  疑问:那么我们为什么需要PID呢,比如我控制温度,我不能监控温度值,温度值一到就停止吗?

  这里必须要先说下我们的目标,因为我们所有的控制无非就是想输出能达到我们的设定,即如果我们设定了一个目标温度值,那么我们想要一个什么样的气温变化呢?

  比如设定目标温度为30度,目标无非是希望达到图1希望其能快速而且没有抖动的达到30度。

  那这样大多数人应该就明白,若使用温度一到就停止的办法,当然如果要求不高可能也行,但肯定达不到图1这样的要求,因为温度到了后余温也会让温度继续升高。而且温度自身也会通过空气散热的。

  综上所述,我们应该PID的原因无非就是普通控制手段没有很好的方法使输出快速稳定的到达设定值。

  (1)比例控制规律P:采用P控制规律能较快地克服扰动的影响,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现。它适用于控制通道滞后较小、负荷变化不大、控制要求不高、被控参数允许在一些范围内有余差的场合。如:金彪公用工程部下设的水泵房冷、热水池水位控制;油泵房中间油罐油位控制等。

  (2)比例积分控制规律(PI):在工程中比例积分控制规律是应用最广泛的一种控制规律。积分能在比例的基础上消除余差,它适用于控制通道滞后较小、负荷变化不大、被控参数不允许有余差的场合。如:在主线号枪的重油流量控制管理系统;油泵房供油管流量控制管理系统;退火窑各区温度调节系统等。

  (3)比例微分控制规律(PD):微分具有超前作用,对于具有容量滞后的控制通道,引入微分参与控制,在微分项设置得当的情况下,对于提高系统的动态性能指标,有着显著效果。因此,对于控制通道的时间常数或容量滞后较大的场合,为了更好的提高系统的稳定性,减小动态偏差等可选用比例微分控制规律。如:加热型温度控制、成分控制。需要说明一点,对那些纯滞后较大的区域里,微分项是无能为力,而在测量信号有噪声或周期性振动的系统,则也不宜采用微分控制。如:大窑玻璃液位的控制。

  (4)例如积分微分控制规律(PID):PID控制规律是一种较理想的控制规律,它在比例的基础上引入积分,可以消除余差,再加入微分作用,又能提高系统的稳定性。它适用于控制通道时间常数或容量滞后较大、控制要求比较高的场合。如温度控制、成分控制等。

  鉴于D规律的作用,我们还一定要了解时间滞后的概念,时间滞后包括容量滞后与纯滞后。其中容量滞后通常又包括:测量滞后和传送滞后。测量滞后是检测元件在检测时要建立一种平衡,如热电偶、热电阻、压力等响应较慢产生的一种滞后。而传送滞后则是在传感器、变送器、执行机构等设备产生的一种控制滞后。纯滞后是相对与测量滞后的,在工业上,大多的纯滞后是由于物料传输所致,如:大窑玻璃液位,在投料机动作到核子液位仪检测需要很长的一段时间。

  总之,控制规律的选用要根据过程特性和工艺技术要求来选取,决不是说PID控制规律在任何情况下都具有较好的控制性能,不分场合都采用是不明智的。如果这样做,只会给其它工作增加复杂性,并给参数整定带来困难。当采用PID控制器还达不到工艺要求,则需要仔细考虑其它的控制方案。如串级控制、前馈控制、大滞后控制等。

  Kp、Ti、Td三个参数的设定是PID控制算法的核心问题。一般说来编程时只能设定他们的大概数值,并在系统运行时通过反复调试来确定最佳值。因此调试阶段程序必须得能随时修改和记忆这三个参数。

  在某些应用场合,比如通用仪表行业,系统的工作对象是不确定的,不同的对象就得采用不一样的参数值,没法为用户设定参数,就引入参数自整定的概念。实质就是在首次使用时,通过N次测量为新的工作对象寻找一套参数,并记忆下来作为以后工作的依据。具体的整定方法有三种:临界比例度法、衰减曲线、临界比例度法(Ziegler-Nichols)

  1.1 在纯比例作用下,逐渐增加增益至产生等副震荡,根据临界增益和临界周期参数得出PID控制器参数,步骤如下:

  (1)将纯比例控制器接入到闭环控制管理系统中(设置控制器参数积分时间常数Ti =∞,实际微分时间常数Td =0)。

  (2)控制器比例增益K设置为最小,加入阶跃扰动(一般是改变控制器的给定值),观察被调量的阶跃响应曲线)由小到大改变比例增益K,直到闭环系统出现振荡。

  (4)系统出现持续等幅振荡时,此时的增益为临界增益(Ku),振荡周期(波峰间的时间)为临界周期(Tu)。

  (1)在采用这种方法获取等幅振荡曲线时,应使控制管理系统工作在线性区,不要使控制阀出现开、关的极端状态,否则得到的持续振荡曲线可能是“极限循环”,从线性系统概念上说系统早已处于发散振荡了。

  (2)由于被控对象特性的不同,按上表求得的控制器参数不一定都能获得满意的结果。对于无自平衡特性的对象,用临界比例度法求得的控制器参数往往使系统响应的衰减率偏大(ψ>0.75 )。而对于有自平衡特性的高阶等容对象,用此法整定控制器参数时系统响应衰减率大多偏小(ψ<0.75 )。为此,上述求得的控制器参数,应针对具体系统在实际运行过程中进行在线) 临界比例度法适用于临界振幅不大、振荡周期较长的过程控制管理系统,但有些系统从安全性考虑不允许进行稳定边界试验,如锅炉汽包水位控制管理系统。还有某些时间常数较大的单容对象,用纯比例控制时系统始终是稳定的,对这些系统也是没办法用临界比例度法来进行参数整定的。(4)只适用于二阶以上的高阶对象,或一阶加纯滞后的对象,否则,在纯比例控制情况下,系统不可能会出现等幅振荡。1.3 若求出被控对象的静态放大倍数KP=△y/△u ,则增益乘积KpKu可视为系统的最大开环增益。通常认为Ziegler-Nichols闭环试验整定法的适合使用的范围为:

  2时,在对控制精度要求不高的场合仍可使用pid控制器,但需要对表1进行修正。在这种情况下,建议采用smith预估控制和imc控制策略。

  <(4)当KpKu

  1.5时,在对控制精度要求不高的场合仍可使用pi控制器,在这种情况下,微分作用已意义不大。

  <2、衰减曲线法

  <衰减曲线法与临界比例度法不同的是,闭环设定值扰动试验采用衰减振荡(通常为4:1或10:l),然后利用衰减振荡的试验数据,根据经验公式求取控制器的整定参数。整定步骤如下:

  (2)系统稳定后,作设定值阶跃扰动,观察系统的响应,若系统响应衰减太快,则减小比例增益K;反之,应增大比例增益K。直到系统出现如下图(a)所示的4:1衰减振荡过程,记下此时的比例增益Ks及和振荡周期Ts数值。

  (3)利用Ks和Ts值,按下表给出的经验公式,计算出控制器的参数整定值。

  (1)加给定干扰不能太大,要根据相关生产操作要求来定,一般在5%左右,也有例外的情况。

  (2)必须在工艺参数稳定的情况下才能加给定干扰,否则得不到正确的整定参数。

  (3)对于反应快的系统,如流量、管道压力和小容量的液位调节等,要得到严格的4:1衰减曲线较困难,一般以被调参数来回波动两次达到稳定,就近似地认为达到4:1衰减过程了。(4)投运时,先将K放在较小的数值,把Ti减少到整定值,把Td逐步放大到整定值,然后把K拉到整定值(如果在K=整定值的条件下很快地把Td放到整定值,控制器的输出会剧烈变化)。3、经验整定法

  使PID为纯比例调节,输入设定为系统允许最大值的60%~70%,由0逐渐加大比例增益至系统出现振荡;再反过来,从此时的比例增益逐渐减小至系统振荡消失,记录此时的比例增益,设定PID的比例增益P为当前值的60%~70%。

  (2)确定积分时间常数比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti至系统出现振荡,之后在反过来,逐渐加大Ti至系统振荡消失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。(3)确定积分时间常数Td积分时间常数Td一般不用设定,为0即可。若要设定,与确定 P和Ti的方法相同,取不振荡时的30%。(4)系统带载联调,再对PID参数进行微调,直至满足规定的要求。3.2 方法一B:(1)PI调节(a)纯比例作用下,把比例度从较大数值逐渐往下降,至开始产生周期振荡(测量值以给定值为中心作有规则的振荡),在产生周期性振荡的情况下,把此比例度逐渐加宽直至系统充分稳定。 (b)接下来把积分时间逐渐缩短至产生振荡,此时表示积分时间过短,应把积分时间稍加延长,直至振荡停止。

  (2)PID调节(a)纯比例作用下寻求起振点。(b)加大微分时间使振荡停止,接着把比例度调得稍小一些,使振荡又产生,加大微分时间,使振荡再停止,来回这样操作,直至虽加大微分时间,但不能使振荡停止,求得微分时间的最佳值,此时把比例度调得稍大一些直至振荡停止。(c)把积分时间调成和微分时间相同的数值,如果又产生振荡则加大积分时间直至振荡停止。3.3 方法二:另一种方法是先从表列范围内取Ti的某个数值,若需要微分,则取Td=(1/3~1/4)Ti,然后对δ进行试凑,也能较快地达到一定的要求。实践证明,在一些范围内适当地组合δ和Ti的数值,能够获得同样衰减比的曲线,就是说,δ的减少,可以用增加Ti的办法来补偿,而基本上不影响调节过程的质量。所以,这样的一种情况,先确定Ti、Td再确定δ的顺序也能的。而且可能更快些。如果曲线仍然不理想,可用Ti、Td再加以适当调整。3.4 方法三:(1)在实际调试中,也可以先大致设定一个经验值,然后根据调节效果修改。流量系统:P(%)40--100,I(分)0.1--1压力系统:P(%)30--70, I(分)0.4--3液位系统:P(%)20--80, I(分)1—5

  4、复杂调节系统的参数整定以串级调节系统为例来说明复杂调节系统的参数整定方法。由于串级调节系统中,有主、副两组参数,各通道及回路间存在着相互联系和影响。改变主、副回路的任一参数,对总系统都有影响。特别是主、副对象时间常数相差不大时,动态联系密切,整定参数的工作尤其困难。

  在整定参数前,先要明确串级调节系统的设计目的。如果主要是保证主参数的调节质量,对副参数要求不高,则整定工作就非常容易;如果主、副参数都要求高,整定工作就很复杂。下面介绍“先副后主”两步参数整定法。第一步:在工况稳定情况下,将主回路闭合,把主控制器比例度放在100%,积分时间放在最大,微分时间放在零。用4:1衰减曲线整定副回路,求出副回路的比例增益K2s和振荡周期T2s。第二步:把副回路看成是主回路的一个环节,使用4:1衰减曲线法整定主回路,求得主控制器K1s和T1s。

  根据K1s、K2s、T1s、T2s按表2经验公式算出串级调节系统主、副回路参数。先放上副回路参数,再放上主回路参数,如果得到满意的过渡过程,则整定工作完毕。否则可进行适当调整。

  如果主、副对象时间常数相差不大,按4:1衰减曲线法整定,也许会出现“共振”危险,这时,可适当减小副回路比例度或积分时间,以达到减少副回路振荡周期的目的。同理,加大主回路比例度或积分时间,以期增大主回路振荡周期,使主、副回路振荡周期之比加大,避免“共振”。这样做的结果会降低调节质量。

  如果主、副对象特性太相近,则说明确定的方案欠妥当,就不能完全依靠参数整定来提高调节质量了。

  一是利用数字PID控制算法调节直流电机的速度,方案是采用光电开关来获得电机的转动产生的脉冲信号,单片机(MSP430G2553)经过测量脉冲信号的频率来计算电机的转速(具体测量频率的算法是采取直接测量法,定时1s测量脉冲有多少个,本身的测量误差可以有0.5转加减),测量的转速同给定的转速进行比较产生误差信号,来产生控制信号,控制信号是通过PWM调整占空比也就是调整输出模拟电压来控制的(相当于1位的DA,如果用10位的DA来进行模拟调整呢?效果会不会好很多?),这个实验控制能力有一定的范围,只能在30转/秒和150转/秒之间来控制,当给定值(程序中给定的速度)高于150时,实际速度只能保持在150转,这也就是此系统的最大控制能力,当给定值低于30转时,直流电机转轴实际是不转动的,但由于误差值过大,转速会迅速变高,然后又会停止转动,就这样循环往复,不能够达到控制效果。

  根据实测,转速稳态精度在正负3转以内,控制时间为4到5秒。实验只进行到这种程度,思考和分析也只停留在这种深度。

  二是利用数字PID控制算法调节直流减速电机的位置,方案是采用与电机同轴转动的精密电位器来测量电机转动的位置和角度,经过测量得到的角度和位置与给定的位置做比较产生误差信号,然后位置误差信号通过一定关系(此关系纯属根据想象和实验现象来拟定和改善的)转换成PWM信号,作为控制信号的PWM信号是先产生对直流减速电机的模拟电压U,U来控制直流减速电机的力矩(不太清楚),力矩产生加速度,加速度产生速度,速度改变位置,输出量是位置信号,所以之间应该对直流减速电机进行系统建模分析,仿真出直流减速电机的近似系统传递函数,然后根据此函数便可以对PID的参数进行整定了。

  两次体会都不是非常清楚PID参数是如何整定的,没有特别清晰的理论指导和实验步骤,对结果的整理和分析也不够及时,导致实验深度和程度都不能够达到理想效果。

  有一个水缸点漏水(而且漏水的速度还不一定固定不变)要求水面高度维持在某个位置一经发现水面高度低于要求位置,就要往水缸里加水。

  小明接到任务后就一直守在水缸旁边,时间长就感觉无聊,就跑到房里看小说了,每30分钟来检查一次水面高度。水漏得太快,每次小明来检查时,水都快漏完了,离要求的高度相差很远,小明改为每3分钟来检查一次,结果每次来水都没怎么漏,不需要加水,来得太频繁做的是无用功。

  开始小明用瓢加水,水龙头离水缸有十几米的距离,经常要跑好几趟才加够水,于是小明又改为用桶加,一加就是一桶,跑的次数少了,加水的速度也快了,

  但好几次将缸给加溢出了,不小心弄湿了几次鞋,小明又动脑筋,我不用瓢也不用桶,老子用盆,几次下来,发现刚刚好,不用跑太多次,也不会让水溢出。这个加水工具的大小就称为比例系数。

  小明又发现水虽然不会加过量溢出了,有时会高过要求位置比较多,还是有打湿鞋的危险。他又想了个办法,在水缸上装一个漏斗,

  每次加水不直接倒进水缸,而是倒进漏斗让它慢慢加。这样溢出的问题解决了,但加水的速度又慢了,有时还赶不上漏水的速度。

  于是他试着变换不同大小口径的漏斗来控制加水的速度,最后终于找到了满意的漏斗。漏斗的时间就称为积分时间 。

  小明终于喘了一口,但任务的要求突然严了,水位控制的及时性要求大幅度的提升,一旦水位过低,必须立即将水加到要求位置,并且不可以高出太多,否则不给工钱。

  小明又为难了!于是他又开动脑筋,终于让他想到一个办法,常放一盆备用水在旁边,一发现水位低了,不经过漏斗就是一盆水下去,这样及时性是保证了,但水位有时会高多了。

  他又在要求水面位置上面一点将水凿一孔,再接一根管子到下面的备用桶里这样多出的水会从上面的孔里漏出来。这个水漏出的快慢就称为微分时间。

  再把水位波动的趋势分为甚快、快、较快、慢、停几个区段,并区分趋势的正负;

  如上所述,我们应该制定一个控制规则表,然后制定参数判断水位区段的界值、波动趋 势的界值、输出幅度的界值。

  比例控制(P)是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。

  但是,仅仅是P控制的话,会产生下面将提到的offset (稳态误差),所以一般加上积分控制(I),以消除稳态误差。

  比例控制中,经过一段时间后误差稳定在一定值时,此时的误差叫做稳态误差(off set)。

  仅用比例控制的时候,根据负载的变动及设备的固有特性不同,会出现不同的稳态误差。

  比例带小时不会产生。为消除稳态误差,我们设定手动复位值--manual reset值(MR),以消除控制误差。

  为此,将MR(manual reset值)设为可变,则可自由整定(即调整)调节器的输出。只要手动操作输出相当于offset的量,就能与目标值一致。

  这就叫做手动复位(manual reset),通常比例调节器上配有此功能。

  在实际的自动控制中,每次发生off set时以手动进行reset的话,这样并不实用。在后面将叙述的积分控制功能,能自动消除稳态误差。

  为此,将MR(manual reset值)设为可变,则可自由整定(即调整)调节器的输出。只要手动操作输出相当于offset的量,就能与目标值一致。

  这就叫做手动复位(manual reset),通常比例调节器上配有此功能。

  在实际的自动控制中,每次发生off set时以手动进行reset的话,这样并不实用。在后面将叙述的积分控制功能,能自动消除稳态误差。

  所谓积分控制(I),就是在出现稳态误差时自动的改变输出量,使其与手动复位动作的输出量相同,达到消除稳态误差的目的。

  当系统存在误差时,进行积分控制,根据积分时间的大小调节器的输出会以一定的速度变化,只要误差还存在,就会不断的进行输出。

  当积分项和比例项对于控制器的输出的贡献相同,即积分作用重复了一次比例作用时所花费的时间,就是积分时间。

  当输入量持续的以一定速率变化时,微分项和比例项对于控制器的输出的贡献相同,即微分作用重复了一次比例作用时所花费的时间,就是微分时间。

  我们看一个生活例子,冬天洗热水澡,需要先放掉一段时间的冷水,因为水管里有一段冷水,热水器也需要一个加热过程,等过了最近一段时间之后水温有些接近目标值后,开始调节水龙头来调节冷、热水之间的比例及出水量,之后再慢慢的微调,在洗浴过程中感觉温度不合适,再一点点的调节。这样的一个过程,实际上的意思就是PID算法过程。我们之所以微调,是因为水温的变化速度与我调节的速度不相匹配,存在一个滞后效应,我们应该调节一点点,等一下再感觉一下温度,不够再调节一点点,再感觉,这样的一个过程就叫PID算法,也能说,滞后效应是引入PID的原因。

  失去的能否找回来?能!只是我找回了纽扣,却发现衣服已不再了。这个就是滞后效应。

  负反馈系统,都有滞后效应,但为什么运放、电源这类的却从来不提PID算法呢?这是因为这类系统的滞后延时时间很短,若考虑这个延时,负反馈引入180度相位,延时恰好引入180度相位,则完全可能会导致振荡。问题就在于这个延时时间足够短,它的谐振频率点比较高,以运放为例,加入延时加上负反馈引起的谐振点为10MHz,但这片运放的频率响应是1MHz,则在10MHz下完全不可能会引起振荡,因为这个芯片的频响特性只有1MHz。我们常用的线性电源IC,比如SOT23封装的LDO,假如输出不加电容,就会输出一个振荡的波形,相对来说电源IC的滞后效应比运放要大,但是,因为电源一般后面都要接大电容的,它的频响特性很低,接近直流0Hz,所以当有电容时候,就无法振荡了。

  而工业控制领域,比如温度等,都是滞后效应很严重的,往往都是mS,甚至是10mS级别的,若直接用负反馈,因为激励与反馈的不同步,必然导致强烈的振荡,所以未解决这个问题,我们需要引入PID算法,来实现这类滞后效应严重系统的负反馈控制,我们以高频感应加热设备加热工件,从常温25度加热到700度为例做说明:

  意法半导体(STMicroelectronics,简称ST)发布最新的STM32F030超值系列微控制器。批量订货最低价仅为0.32美元,STM32F030是低预算项目的理想选择,同时还让设计人员有机会使用型号齐全且软硬件兼容的32位微控制器产品组合,从而提升应用性能,扩大产品系列。 全新STM32F030超值系列基于48MHz的ARM® Cortex™-M0处理器内核。与同类竞争产品不同,STM32F030虽然只有8位微控制器的价格,但性能和特性并没有受到任何影响,如没有降低内核速度,同样保持丰富的外设数量和种类。 意法半导体微控制器产品部总经理Michel Buffa表示:“STM32F0超值型让32位微控制器更加平易

  引言 在工业控制中,许多控制过程机理复杂,滞后大,控制对象具有变结构、时变等特点。采用常规的PID控制算法,难以适应参数变化及干扰因素的影响,大都出现较大超调,PID参数较难确定,不仅给调试带来麻烦,调节的效果也不理想。目前由国外引进的某些调节仪表中,推出了许多改进型如加入抗饱和积分功能,采用自整定来协助确定PID参数及自适应技术来改进控制效果。为客服常规PID调节的不足,提高其性能,现在各大仪表公司及仪表生产厂,都在致力于新的控制算法开发和自整定技术的探究,下面以系列仪表为例,简述系列仪表中的人工智能控制算法和特点。 系列仪表中的人工智能控制算法 系列仪表中的人工智能控制算法,即对PID算法加以改进和保留,加入模糊控制算法

  介绍 PCA9685 是最新的快速模式 Plus(Fm+)系列中的一员。 Fm+器件能够给大家提供更高的频率 (高达 1MHz)和更频繁(densely populated) 的总线pF)。 OE引脚一定要至低使能,或者直接接地 网上Arduino的教程很多,商家给的也是Arduino的驱动文件,那怎么在STM32上用呢? STM32与驱动板的连接 驱动板 STM32 VCC 3.3V GND GND SCL I2C_SCL SDA I2C_SDA OE GND(低电平) V+ 不接 V+可以不接而采用电源接线V的充电宝即可 由于PCA9685是使用IIC的,那么如何使用I

  近年来,嵌入式技术发展极为迅速,出现了以单片机、专用嵌入式 ARM 为核心的高集成度处理器,并在通信、自动化、电力电子等领域得到了广泛应用。电源行业也开始采用内部集成资源丰富的嵌入式控制器来构成大型开关电源的控制管理系统。将SAMSUNC公司的嵌入式 ARM 处理器S3C4480芯片,应用到开关电源的控制管理系统的设计中,采用C语言和少量汇编语言,就能轻松实现一种以嵌入式 ARM 处理器为核心、具有智能 PID 控制器以及触摸屏、液晶显示器等功能的开关电源控制管理系统。 系统硬件架构 随着数字电路与半导体工艺日趋完善成熟,数字信号、数字电路在应用中所占比例慢慢的变大,同时显现出慢慢的变多的优点:便于计算机处理控制、减小信

  系统 /

  前言 涉及知识点:上下拉电阻,stm32_GPIO工作模式,stm32按键控制,GPIO电平读取,宏定义 内容:两个按键控制两个LED灯亮灭。 一、所用知识点复习 示例:pandas 是基于NumPy 的一种工具,该工具是未解决数据分析任务而创建的。 1、stm32工作模式(注意上下拉输入的区别) 2、按键抖动与常见按键接法 按键抖动: 按键消抖通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。因而在闭合及断开的瞬间均伴随有一连串的抖动,为了不产生这种现象而作的措施就是按键消抖。 抖动时间的长短由按键的机械特性决定

  LED /

  环境:stm32 72M时钟 串口波特率9600 RS485芯片 发送的数据每组16byte 原程序(未修改): //RS485 发送len个字节 //buf:发送区首地址 //len:发送的字节数 void RS485SendData(u8 *buf,u8 len) { u8 t; RS485_TX_EN=1; //设置为发送模式 for(t=0;t len;t++) //循环发送数据 { while(USART_GetFlagStatus(USART2, USART_FLAG_TC) == RESET); USART_SendData(USART2,buf );

  前言 EXTI: External interrupt / event controller 外部中断/事件控制器 提示:以下是本篇文章正文内容 一、EXTI功能框图 二、使用方法 1.EXTI_InitTypeDef 初始化结构体 1-EXTI_Line:用于产生中断/事件线-EXTI_Mode : EXTI模式(中断/事件) 3-EXTI_Trigger:触发(上/下/上下) 4-EXTI_LineCmd:使能或者失能(IMR/EMR) 2.实现步骤 1-初始化要连接到EXTI的GPIO 2-初始化EXTI用于产生中断/事件 3-初始化NVIC,用于处理中断 4-编写中断服务函数 5-main函数 三、

  器EXTI概念及使用方法 /

  意法半导体推出了 STLINK-V3 下一代 STM8 和 STM32微控制器 代码烧写及调试探针,进一步改善代码烧写及调试灵活性,提高效率。STLINK-V3支持大容量存储,具有虚拟COM端口和多路桥接功能,烧写性能是上一代探针的三倍,产品价格具市场竞争力,节省应用开发时间,简化设备现场重新编程流程。 除提供典型的JTAG /串行线调试(SWD)和单线接口模块(SWIM)连接外,STLINK-V3的虚拟COM端口(VCP)和多路桥接器还能够最终靠UART、I2C、SPI或CAN接口或GPIO引脚与微控制器通信,方便研发人员使用自定义控制命令自动执行测试,并在PC主机上观察运行时数据,或者使用STLINK-V3配合引导加载

  器 /

  及其应用 (王凌)

  系统设计指南 (埃利斯)

  系统设计

  器的空间矢量脉宽调制

  使用STM32 Nucleo撬开针对物联网的ARM mbed IDE之门

  STM32CubeMX and STM32Cube HAL basics

  【下载】LAT1396 STM32CubeIDE实用技巧之STM32H7双核调试的配置

  【下载】LAT1343 STM32H5 USBD Classic驱动 CDC移植

  【下载】LAT1392 LTDC RGB接口 LCD的TouchGFX工程的移植步骤

  【直播】4月11日,STM32Trust如何帮助新产品设计提升信息安全保护能力

  【线日,基于Buildroot制作STM32MP13启动镜像-深圳/厦门/西安/郑州/苏州

  【新品】STM32U0新一代超低功耗入门级MCU,助力终端产品省电,安全,BOM成本低

  【新品】 STM32H7R/S基于Cortex-M7,运行频率高达600 MHz,板载闪存型MCU 拥有高速的外部存储

  【新品】STM32WBA54/55 支持BLE5.4、IEEE 802.15.4通信协议、Zigbee®、Thread和Matter协议

  【新品】STM32MP2 最高配备双核Arm® Cortex®-A35和Cortex®-M33的STM32MP2系列微处理器

  【新品】STM32H5-Arm® Cortex®-M33 内核,主频高达250MHz,提升性能与信息安全性

  这一次就从大家都很熟悉的点灯程序开始,看看在Cube生态下,怎么一步步的在CubeMX里建立工程,配置必要外设,生成代码;然后在CubeIDE里添 ...

  前面几期我们介绍过队列、二进制信号量以及计数信号量。但是在使用二进制信号量的时候会有一种优先级反转问题的出现,简而言之就是低优先级 ...

  在上一期内容中我们简单的介绍了任务通知的几个函数以及简单的使用了任务通知来实现两个信号之间的通信。本期我们将利用任务通知来模拟三种 ...

  1情景售后 : X工,现场出大事了,今天升级的程序跑着跑着就挂了!现在整个产线都等着这个设备恢复,能安排个人过来支援下吗?bug菌 : my ...

  环境:主机:WIN7开发环境:MDK4 72单片机:STM32说明:在项目中单片机会和服务器进行网络通讯。需要对通讯加密,我选择了TEA加密算法。*说 ...

  51单片机PIC单片机AVR单片机ARM单片机嵌入式系统汽车电子消费电子数据处理视频教程电子百科其他技术STM32MSP430单片机资源下载单片机习题与教程词云:

上一篇:高频感应加热设备募投项目可行性研究报告 下一篇:高频感应加热设备doc

相关产品推荐

友情链接: 18体育新利 新利18体育全站登录 新利18体育全站

在线客服 :     服务热线:13526576560     电子邮箱: 175600268@qq.com

地址:河南省郑州市鑫苑国际广场8楼

18体育新利是高频感应加热设备(又名高频淬火机、高频炉、高频加热机、高频焊机等),模块中频、超高频、超音频、全固态感应加热设备厂家,是国内知名品牌制造商。小型,大型,手持便携式可根据需求定制,价格公道,厂家批发直销! 

Copyright © 18体育新利全站-新利18登录 版权所有